After the discovery that an electric current flowingthrough a conducto translation - After the discovery that an electric current flowingthrough a conducto Indonesian how to say

After the discovery that an electri

After the discovery that an electric current flowing
through a conductor creates a magnetic field around the
conductor, there was considerable scientific speculation
about whether a magnetic field could create a current
flow in a conductor. In 1831, it was demonstrated this
could be accomplished.
To show how an electric current can be created by a
magnetic field, a demonstration similar to that illustrated
in Figure 10-98 can be used. Several turns of a conductor are wrapped around a cylindrical form,
and the ends of the conductor are connected together
to form a complete circuit, which includes a galvanometer.
If a simple bar magnet is plunged into the
cylinder, the galvanometer can be observed to deflect
in one direction from its zero (center) position (Figure
10-98A).
When the magnet is at rest inside the cylinder, the
galvanometer shows a reading of zero, indicating that
no current is flowing (Figure 10-98B).
In Figure 10-98C, the galvanometer indicates a current
flow in the opposite direction when the magnet is
pulled from the cylinder.

The same results may be obtained by holding the magnet
stationary and moving the cylinder over the magnet,
indicating that a current flows when there is relative
motion between the wire coil and the magnetic field.
These results obey a law first stated by the German
scientist, Heinrich Lenz. Lenz’s law states:
The induced current caused by the relative motion of a
conductor and a magnetic field always flows in such a
direction that its magnetic field opposes the motion.
When a conductor is moved through a magnetic field,
an electromotive force (emf) is induced in the conductor.
[Figure 10-99] The direction (polarity) of the
induced emf is determined by the magnetic lines of
force and the direction the conductor is moved through
the magnetic field. The generator left-hand rule (not to
be confused with the left-hand rules used with a coil)
can be used to determine the direction of the induced
emf. [Figure 10-100] The left-hand rule is summed
up as follows:
The first finger of the left hand is pointed in the direction
of the magnetic lines of force (north to south), the
0/5000
From: -
To: -
Results (Indonesian) 1: [Copy]
Copied!
After the discovery that an electric current flowingthrough a conductor creates a magnetic field around theconductor, there was considerable scientific speculationabout whether a magnetic field could create a currentflow in a conductor. In 1831, it was demonstrated thiscould be accomplished.To show how an electric current can be created by amagnetic field, a demonstration similar to that illustratedin Figure 10-98 can be used. Several turns of a conductor are wrapped around a cylindrical form,and the ends of the conductor are connected togetherto form a complete circuit, which includes a galvanometer.If a simple bar magnet is plunged into thecylinder, the galvanometer can be observed to deflectin one direction from its zero (center) position (Figure10-98A).When the magnet is at rest inside the cylinder, thegalvanometer shows a reading of zero, indicating thatno current is flowing (Figure 10-98B).In Figure 10-98C, the galvanometer indicates a currentflow in the opposite direction when the magnet ispulled from the cylinder.The same results may be obtained by holding the magnetstationary and moving the cylinder over the magnet,indicating that a current flows when there is relativemotion between the wire coil and the magnetic field.These results obey a law first stated by the Germanscientist, Heinrich Lenz. Lenz’s law states:The induced current caused by the relative motion of aconductor and a magnetic field always flows in such adirection that its magnetic field opposes the motion.When a conductor is moved through a magnetic field,an electromotive force (emf) is induced in the conductor.[Figure 10-99] The direction (polarity) of theinduced emf is determined by the magnetic lines offorce and the direction the conductor is moved throughthe magnetic field. The generator left-hand rule (not tobe confused with the left-hand rules used with a coil)can be used to determine the direction of the inducedemf. [Figure 10-100] The left-hand rule is summedup as follows:The first finger of the left hand is pointed in the directionof the magnetic lines of force (north to south), the
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Setelah penemuan bahwa arus listrik yang mengalir
melalui konduktor menciptakan medan magnet di sekitar
konduktor, ada spekulasi ilmiah yang cukup
tentang apakah medan magnet dapat menciptakan arus
aliran dalam konduktor. Pada tahun 1831, itu menunjukkan hal ini
dapat dicapai.
Untuk menunjukkan bagaimana arus listrik dapat dibuat oleh
medan magnet, demonstrasi serupa dengan yang dijelaskan
pada Gambar 10-98 dapat digunakan. Beberapa berubah dari konduktor yang melilit bentuk silinder,
dan ujung-ujung konduktor dihubungkan bersama
untuk membentuk sebuah rangkaian lengkap, yang mencakup sebuah galvanometer.
Jika sederhana bar magnet terjun ke
silinder, galvanometer dapat diamati untuk menangkis
dalam satu arah dari yang nol (pusat) posisi (Gambar
10-98A).
Ketika magnet yang diam di dalam silinder, yang
galvanometer menunjukkan pembacaan nol, menunjukkan bahwa
tidak ada arus yang mengalir (Gambar 10-98B).
Pada Gambar 10-98C, galvanometer menunjukkan arus
aliran dalam arah yang berlawanan saat magnet yang
ditarik dari silinder. Hasil yang sama dapat diperoleh dengan memegang magnet stasioner dan bergerak silinder lebih magnet, menunjukkan bahwa arus mengalir bila ada relatif gerak antara kumparan kawat dan medan magnet. Hasil ini mematuhi hukum pertama dinyatakan oleh Jerman ilmuwan, Heinrich Lenz. Hukum Lenz menyatakan: Arus induksi yang disebabkan oleh gerakan relatif dari konduktor dan medan magnet selalu mengalir sedemikian. Arah itu medan magnet menentang gerakan Ketika konduktor digerakkan melalui medan magnet, suatu gaya gerak listrik (ggl) adalah diinduksi dalam konduktor. [Gambar 10-99] arah The (polaritas) dari ggl induksi ditentukan oleh garis-garis magnetik dari kekuatan dan arah konduktor digerakkan melalui medan magnet. Generator aturan kiri (tidak harus bingung dengan aturan kiri yang digunakan dengan kumparan) dapat digunakan untuk menentukan arah induksi emf. [Gambar 10-100] Aturan kiri disimpulkan sebagai berikut: Jari pertama dari tangan kiri menunjuk ke arah garis gaya magnetik (utara ke selatan), yang






















Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: