We suggest that factor analysis is preferable to principal components analysis. Components analysis is only a data reduction method. It became common decades ago when computers were slow and expensive to use; it was a quicker, cheaper alternative to factor analysis (Gorsuch, 1990). It is computed without regard to any underlying structure caused by latent variables; components are calculated using all of the variance of the manifest variables, and all of that variance appears in the solution (Ford et al., 1986). However, researchers rarely collect and analyze data without an a priori idea about how the variables are related (Floyd & Widaman, 1995). The aim of factor analysis is to reveal any latent variables that cause the manifest variables to covary.