Three prototype buildings were adapted from the SAC studies (Gupta and translation - Three prototype buildings were adapted from the SAC studies (Gupta and Chinese Traditional how to say

Three prototype buildings were adap

Three prototype buildings were adapted from the SAC studies (Gupta and Krawinkler 1999) with
seismic response coefficient, C s =0.125, 0.125, and 0.106, and seismic base shear per frame,
V=3615, 7135, and 9034 kips, for the three, six, and nine story buildings respectively. For each
building height, the self-centering ratio was varied to be α sc =0.0, 0.5, 1.0, 2.0, ∞ resulting in a total
of fifteen prototype buildings. Using an assumed resistance factor of, ϕ=0.9, an SMA initial stress,
F i-SMA =138 MPa, BRB yield stress, F ysc =276 MPa, and SMA gage length equal to 60% of the brace
length, the BRB and SMA forces were proportioned using Eqs. 1 and 2. Inner, middle, and outer
tubes were selected based on a force associated with the SMA rods all experiencing a peak stress of F u-SMA =483 MPa and to provide enough clearance between elements to create a realistic and
buildable SC-BRB. The resulting SC-BRB had square outer tubes with width between 250 mm
and 530 mm. The computational model included leaning columns with gravity load applied to
simulate P-Δ effects. The same model discussed previously and shown in Figure 5a was used for
the braces. Each of the fifteen prototype buildings was subjected to the 44 FEMA P695 far field
ground motions scaled in accordance with the FEMA P695 methodology to approximate hazard
levels with 10% probability of exceedance in 50 years and 2% probability of exceedance in 50
years for a site in California, U.S.A (FEMA 2009). The 10% in 50 design spectra was anchored
with values of S DS =1.0 and S D1 =0.6, equivalent to the D max hazard definition in FEMA P695, and
the 2% in 50 design spectra was developed using the same values multiplied by a factor of 1.5.

The residual drifts for all three building heights with α sc ≥0.5 were quite small as shown in
Fig. 9a. Even at the 2% in 50 hazard level (results not shown here), there were only a handful of
ground motions that produced residual roof drift ratios greater than 0.1%. Considering a possible
limit on residual drifts of 0.2% based on out-of-plumb requirements for new steel construction in
the U.S.A. (AISC 2010b), the residual drifts for all models show that a self-centering ratio of
α sc ≥0.5 is adequate for limiting residual drifts in these configurations. The minimum required self-
centering ratio is an important result in the context of SC-BRB design because the SMA can
produce significant overstrength as shown in Figure 9b. As a result of BRB and SMA overstrength,
the SC-BRBs reached peak forces of between two (for α sc =0.0) and five (for α sc =∞) times the
design brace force meaning the surrounding columns and beams would need to be designed for
this level of overstrength. In this context, the range α sc =0.5 to 1.5 is recommended for design to
control residual drifts and produce more efficient surrounding frame design.
0/5000
From: -
To: -
Results (Chinese Traditional) 1: [Copy]
Copied!
三原型建築與適應了從囊研究 (古普塔和 Krawinkler 1999 年)地震反應係數,C s = 0.125,0.125 和 0.106,每幀,地震基底剪力V = 3615 7135 和 9034 小牛皮,三、 六、 九個故事建築分別。為每個建築物高度,自定比率變化是 α sc = 0.0、 0.5、 1.0、 2.0,∞ 共導致十五的原型建築。使用假設的阻力因數,φ = 0.9,SMA 的初始應力,F i-SMA = 138 MPa,BRB 屈服應力、 F ysc = 276 MPa 和 SMA 規長度等於 60%的大括弧長度,屈曲和 SMA 部隊相稱使用情商的人。1 和 2。內、 中、 外管被選定基於關聯的所有經歷的峰值應力 F u-SMA 的形狀記憶合金棒力 = 483 MPa,並提供足夠間隙元素來創建一個現實和可生成 SC-BRB。由此產生的 SC BRB 有方形外管之間 250 毫米的寬度和 530 毫米。計算模型與重力荷載應用於包括倚柱類比 P-Δ 效應。前面已經討論過和圖 5a 所示相同的模型被用於大括弧。每一處十五原型建築遭到到 44 FEMA P695 遠場地震動縮放 FEMA P695 方法近似的危害10%概率在 50 年和 2%的概率在 50 水準的水準的水準年在加利福尼亞州,美國 (聯邦緊急事務管理局 2009 年) 的網站。被錨定在 50 設計反應譜的 10%與值 S DS = 1.0 和 S D1 = 0.6,相當於在聯邦緊急事務管理局 P695 D 最大危害定義和2%在 50 設計反應譜被利用相同的值乘以 1.5 的係數。 為所有的三個建築物高度與 α sc ≥ 殘餘積雪都很小,如中所示圖 9a。甚至在 50 的危險程度 (此處未顯示的結果) 2%,有只有少量的地震動產生殘餘屋頂漂移率大於 0.1%。考慮一種可能對基於新鋼建設出來的鉛要求的 0.2%的殘餘漂移的限制美國 (鞍鋼 2010b),所有型號的殘餘值漂移表明自定心的比Α sc ≥ 來說是足夠的限制在這些配置中的殘餘漂移。最低的要求自我-定心比是一個重要的結果,在上下文中的 SC BRB 設計因為 SMA 可以圖 9b 所示,產生顯著的超強。由於廣播和 SMA 超強SC 屈曲達到峰值部隊的兩個之間 (α sc = 0.0) 和五個 (α sc = ∞) 倍大括弧強制意義周圍的柱和梁的設計將需要為設計此級別的超強。在這種情況下,範圍 α sc = 0.5 至 1.5 建議為對設計控制殘餘漂移和生產效率更高的周邊框架設計。
Being translated, please wait..
Results (Chinese Traditional) 2:[Copy]
Copied!
三原型建築物被改編自國資委研究(Gupta和Krawinkler 1999)與
地震響應係數,C S = 0.125,0.125和0.106,而每幀地震基底剪力
,V = 3615,7135和9034千磅,為三,六,九小樓分別。對於每個
建築物高度,自動定心比率是變化為αSC = 0.0,0.5,1.0,2.0,∞產生總共
十五原型建築物。使用的假定抵抗因子,φ= 0.9,一個SMA初始應力,
的F i-SMA = 138兆帕,BRB屈服應力,女YSC = 276兆帕,和SMA標距長度等於60%支架的
長度,BRB和SMA軍隊使用公式勻稱。1和2,內,中,和外
管的基礎上與SMA棒都出現˚FU-SMA = 483兆帕的峰值應力提供元素之間足夠的空間,創造一個現實的和相關的力量而選擇
可建SC- BRB。將所得的SC-BRB具有正方形外管與在250毫米寬
和530毫米。計算模型包括倚柱重力荷載應用到
模擬的P-Δ效應。用於先前所論述並在圖5a中所示的相同的模型
大括號。每個15原型建築物進行了44 FEMA P695遠場
縮放按照FEMA P695方法來近似危險地面運動
的水平與超越的10%的概率在50年和2%在50超越的概率
年為站點在美國加利福尼亞州(2009年FEMA)。50設計譜的10%的固定
帶S DS = 1.0和S D1 = 0.6,值相當於FEMA P695為D最大危害的定義,並
在50個設計譜2%用乘以一個相同的值開發因子為1.5。將殘餘的漂移為所有三個建築物的高度與αSC≥0.5相當小,如圖所示。9A。即使在50危險水平的2%(結果這裡沒有顯示),只有極少數的所產生的殘留屋頂漂移率超過0.1%的地面運動。考慮可能在0.2%的基礎上進行新的鋼鐵建設外的垂直要求殘餘漂移限制美國(AISC,2010年b),殘留的積雪所有模型顯示的自定心比αSC≥0.5充足限制殘留漂移這些配置。所需的最小自定心比率是一個重要的結果中的SC-BRB設計的上下文中,因為將SMA可以產生顯著超強如圖9b所示。作為BRB和SMA超強的結果,對SC-BRBS達到兩者之間的峰值力(對於αSC = 0.0)和5(對於αSC =∞)倍的設計支撐力意味著周邊立柱和橫梁將需要設計的超強這個水平。在這方面,區域αSC = 0.5至1.5,推薦設計來控制殘餘漂移和產生更有效的周邊框架設計。












Being translated, please wait..
Results (Chinese Traditional) 3:[Copy]
Copied!
三原型建築是改編自囊研究(Gupta和Krawinkler所1999)與
地震響應係數,C = 0.125,0.125,和0.106,和基底地震剪力的每幀,
V = 36157135,和9034磅,為三,六,和九層的建築分別。每個
建築高度,自定的比例變化是αSC = 0,0.5,1,2,∞共導致
十五原型建築。使用一個假設的阻力係數,ϕ= 0.9,SMA的初始應力,
F I-SMA = 138 MPa,BRB屈服應力,F = 276 MPa和YSC,SMA長度等於60%的支撐
長度,支撐和SMA的軍隊的比例使用等化器。1和2。內、中、外管的選擇是基於力與SMA杆都經歷一個F u-sma = 483 MPa應提供足够的間隙元素之間創造一個現實的和可
SC-BRB。由此產生了廣場外SC-BRB管250毫米和530毫米之間的寬度
。計算模型包括倚柱應用於
類比Δ重力荷載P的影響。同樣的模型討論以前,圖5a所示進行
括弧。十五個原型建築受到44聯邦緊急事務管理局p695遠場
地面運動擴展與FEMA p695方法按照近似的危險
水准與50 10%年超越概率2%的超越概率50
年在加利福尼亞一個網站,美國一個(FEMA 2009)。50設計譜的10%被錨定的
與DS為1值的D1 = 0.6,在FEMA p695的最大風險的定義是等價的,並
2% 50設計譜是使用相同的值乘以1.5的係數了。

殘餘漂移三建築高度0.5αSC≥都非常小,在
圖9A所示。即使在50個危險級別(結果沒有在這裡),有2%個,只有極少數的地面運動產生的剩餘的屋頂漂移率大於0.1%。考慮可能的
限制0.2%殘餘漂移的基礎上在
美國新的鋼結構垂直要求(鞍鋼2010B),各種模型的殘餘漂移表明
αSC≥0自定心比。5是足够的,以限制這些配寘中的殘留漂移。最低要求的自我
定心比在SC-BRB設計方面的一個重要的結果,因為
SMA可以產生顯著的超强如圖9b所示。由於BRB和SMA超强,
SC支撐力量之間達到峰值(為αSC = 0)和五(對αSC =∞)時代的
設計支撐力意義周圍的柱和梁都需要被設計為
這個級別的超强。在這種情況下,範圍內的0.5至1.5的範圍內建議的設計,以控制殘留的漂移,並產生更有效的周邊框架設計。
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: