Plants, as well as other highly developed multicellularorganisms, show translation - Plants, as well as other highly developed multicellularorganisms, show Indonesian how to say

Plants, as well as other highly dev

Plants, as well as other highly developed multicellular
organisms, show increased DNA methylation when compared
with other eukaryotic organisms, probably due to the
need for more efficient control of transposons, or the need
for additional epigenetic regulation to control the development
of many different cell types. In humans it is well
demonstrated that DNA methylation patterns vary with cell
type and developmental stage (Meissner et al., 2008; Hodges
et al., 2009) and among individuals (Zhang et al., 2009;
Maegawa et al., 2010). However, increased methylation
may pose additional mutagenic risks since 5-methylcytosine
(5mC) deamination is repaired less efficiently than deamination
of unmethylated cytosine (Jeltsch, 2010). In plants,
genome-wide DNA methylation reprogramming occurs in
non-germline reproductive cells, which may function to
reinforce silencing of transposable elements in germ cells
(for a review, see Feng et al., 2010b), but, unlike animals,
plants are not known to undergo genome-wide waves of
demethylation in germ cells. However, reprogramming of
the DNA-packaging histone proteins takes place in the
zygote.
The N-terminal tails of core histone proteins can be
covalently modified by acetylation, methylation, phosphorylation,
sumoylation, carbonylation, and glycation (Kouzarides,
2007). The combinatorial set of modifications (histone code)
plays an essential role in regulating dynamic changes in
chromatin structure, ultimately influencing gene transcription
(Berger, 2007) in response to diverse exogenous and endogenous
stimuli including stress, pathogen attack, temperature,
light, and hormones
1664/5000
From: Detect language
To: Indonesian
Results (Indonesian) 1: [Copy]
Copied!
Tanaman, serta lainnya sangat berkembang multiselulerorganisme, menunjukkan peningkatan DNA metilasi bila dibandingkandengan organisme eukariotik lain, mungkin karenaperlu untuk lebih efisien kontrol transposon, atau kebutuhanuntuk tambahan epigenetik jadi yang disebut peraturan untuk mengendalikan pengembanganberbagai jenis sel yang berbeda. Dalam manusia sangat baikmenunjukkan bahwa DNA metilasi pola bervariasi dengan seljenis dan tahap perkembangan (Meissner et al., 2008; Hodgeset al., 2009) dan antara individu (Zhang et al., 2009;Maegawa et al., 2010). Namun, meningkat metilasidapat menimbulkan risiko tambahan mutagenik sejak 5-methylcytosine(5mC) Deaminasi diperbaiki kurang efisien daripada Deaminasidari unmethylated sitosin (Jeltsch, 2010). Pada tanaman,seluruh genom DNA metilasi pemrograman terjadi diBebas-germline reproduksi sel, yang dapat berfungsi untukmemperkuat membungkam transposabel elemen dalam sel-sel germ(untuk review, lihat Feng et al., 2010b), tetapi, tidak seperti hewan,tanaman tidak dikenal untuk menjalani gelombang genom-lebardemethylation dalam sel-sel germ. Namun, pemrogramanDNA-Kemasan histone protein mengambil lokasi dizigot.N-terminal ekor dari inti histone protein dapatberikatan kovalen dengan diubah oleh acetylation, metilasi, fosforilasi,sumoylation, carbonylation dan glycation (Kouzarides,2007). set Kombinatorial modifikasi (kode histone)memainkan peran penting dalam mengatur perubahan dinamis dalamstruktur Kromatin, akhirnya mempengaruhi transkripsi gen(Berger, 2007) dalam menanggapi beragam eksogen dan endogenrangsangan termasuk stres, serangan patogen, suhu,cahaya, dan hormon
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Plants, as well as other highly developed multicellular
organisms, show increased DNA methylation when compared
with other eukaryotic organisms, probably due to the
need for more efficient control of transposons, or the need
for additional epigenetic regulation to control the development
of many different cell types. In humans it is well
demonstrated that DNA methylation patterns vary with cell
type and developmental stage (Meissner et al., 2008; Hodges
et al., 2009) and among individuals (Zhang et al., 2009;
Maegawa et al., 2010). However, increased methylation
may pose additional mutagenic risks since 5-methylcytosine
(5mC) deamination is repaired less efficiently than deamination
of unmethylated cytosine (Jeltsch, 2010). In plants,
genome-wide DNA methylation reprogramming occurs in
non-germline reproductive cells, which may function to
reinforce silencing of transposable elements in germ cells
(for a review, see Feng et al., 2010b), but, unlike animals,
plants are not known to undergo genome-wide waves of
demethylation in germ cells. However, reprogramming of
the DNA-packaging histone proteins takes place in the
zygote.
The N-terminal tails of core histone proteins can be
covalently modified by acetylation, methylation, phosphorylation,
sumoylation, carbonylation, and glycation (Kouzarides,
2007). The combinatorial set of modifications (histone code)
plays an essential role in regulating dynamic changes in
chromatin structure, ultimately influencing gene transcription
(Berger, 2007) in response to diverse exogenous and endogenous
stimuli including stress, pathogen attack, temperature,
light, and hormones
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: ilovetranslation@live.com