Coarse spatial resolution satellite data (500 m to 1 km) have beenused translation - Coarse spatial resolution satellite data (500 m to 1 km) have beenused Indonesian how to say

Coarse spatial resolution satellite

Coarse spatial resolution satellite data (500 m to 1 km) have been
used extensively in the past decades to systematically monitor fire using
computer algorithms to detect the location and intensity of active fires
at the time of satellite overpass, and algorithms tomap the spatial extent
of the areas affected by fires (Mouillot et al., 2014; Roy, Boschetti, & Smith,
2013). Until the successful launch of the polar-orbiting coarse resolution
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on
the Terra and Aqua platforms there were no environmental satellite systems
with dedicated fire monitoring capabilities (Justice, Smith, Gill, &
Csiszar, 2003). The MODIS design includes bands selected for fire detection
and well suited for burned area mapping, and MODIS data are used
to systematically generate global coarse resolution daily 1 km active fire
(Giglio, Descloitres, Justice, & Kaufman, 2003), monthly 500 m burned
area (Giglio, Loboda, Roy, Quayle, & Justice, 2009; Roy, Jin, Lewis, &
Justice, 2005), and associated global emission products (van der Werf
et al., 2010). The MODIS product record will continue with the 2011 successful
Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS)
launch and the planned follow-on Joint Polar Satellite Suite (JPSS)-1
VIIRS mission. VIIRS has dedicated active fire detection capabilities
(Csiszar et al., 2014; Schroeder, Oliva, Giglio, & Csiszar, 2014) with a
coarse spatial resolution of 750 m and 375 m for the thermal and
reflective wavelength bands respectively (Murphy, Ardanuy, Deluccia,
Clement, & Schueler, 2006).
The need for moderate to high spatial resolution (10 m to 30 m)
burned area products has been advocated by fire product users for applications
including carbon budget accounting, estimation of pyrogenic
emissions of greenhouse gasses, particulates and aerosols (GOFC-GOLD,
2014; Hyer & Reid, 2009;Mouillot et al., 2014; Randerson, Chen, van der
Werf, Rogers, & Morton, 2012), fire management and post-fire remediation
(Lentile et al., 2006; Rollins, 2009), and for environmental
management applications (Justice et al., 2013; Trigg & Roy, 2007). Although
moderate to high spatial resolution satellite data, such as provided
by Landsat (Roy et al., 2014), ASTER (Yamaguchi, Kahle, Tsu,
Kawakami, & Pniel, 1998) or RapidEye (Tyc, Tulip, Schulten, Krischke,
& Oxfort, 2005), provide the opportunity for detailed spatial mapping
of burned areas, they have reduced temporal resolution due to their narrow
field of view relative to coarse resolution polar-orbiting sensors
such asMODIS or VIIRS. The temporal frequency of satellite acquisitions
is very important for fire monitoring because the fire behavior and postfire
surface effects can change rapidly, and can be obscured by clouds,
smoke and other optically thick aerosols (Giglio, 2007; Roy, Boschetti,
Justice, & Ju, 2008; Smith & Wooster, 2005). In addition, disturbances
such as shadows, flooding, crop harvesting, or rapid vegetation senescence
may produce spectrally similar effects to burned areas in single
3102/5000
From: Detect language
To: Indonesian
Results (Indonesian) 1: [Copy]
Copied!
Coarse spatial resolution satellite data (500 m to 1 km) have beenused extensively in the past decades to systematically monitor fire usingcomputer algorithms to detect the location and intensity of active firesat the time of satellite overpass, and algorithms tomap the spatial extentof the areas affected by fires (Mouillot et al., 2014; Roy, Boschetti, & Smith,2013). Until the successful launch of the polar-orbiting coarse resolutionModerate Resolution Imaging Spectroradiometer (MODIS) sensors onthe Terra and Aqua platforms there were no environmental satellite systemswith dedicated fire monitoring capabilities (Justice, Smith, Gill, &Csiszar, 2003). The MODIS design includes bands selected for fire detectionand well suited for burned area mapping, and MODIS data are usedto systematically generate global coarse resolution daily 1 km active fire(Giglio, Descloitres, Justice, & Kaufman, 2003), monthly 500 m burnedarea (Giglio, Loboda, Roy, Quayle, & Justice, 2009; Roy, Jin, Lewis, &Justice, 2005), and associated global emission products (van der Werfet al., 2010). The MODIS product record will continue with the 2011 successfulSuomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS)launch and the planned follow-on Joint Polar Satellite Suite (JPSS)-1VIIRS mission. VIIRS has dedicated active fire detection capabilities(Csiszar et al., 2014; Schroeder, Oliva, Giglio, & Csiszar, 2014) with acoarse spatial resolution of 750 m and 375 m for the thermal andreflective wavelength bands respectively (Murphy, Ardanuy, Deluccia,Clement, & Schueler, 2006).The need for moderate to high spatial resolution (10 m to 30 m)burned area products has been advocated by fire product users for applicationsincluding carbon budget accounting, estimation of pyrogenicemissions of greenhouse gasses, particulates and aerosols (GOFC-GOLD,2014; Hyer & Reid, 2009;Mouillot et al., 2014; Randerson, Chen, van derWerf, Rogers, & Morton, 2012), fire management and post-fire remediation(Lentile et al., 2006; Rollins, 2009), and for environmentalmanagement applications (Justice et al., 2013; Trigg & Roy, 2007). Althoughmoderate to high spatial resolution satellite data, such as providedby Landsat (Roy et al., 2014), ASTER (Yamaguchi, Kahle, Tsu,Kawakami, & Pniel, 1998) or RapidEye (Tyc, Tulip, Schulten, Krischke,& Oxfort, 2005), provide the opportunity for detailed spatial mappingof burned areas, they have reduced temporal resolution due to their narrowfield of view relative to coarse resolution polar-orbiting sensorssuch asMODIS or VIIRS. The temporal frequency of satellite acquisitionsis very important for fire monitoring because the fire behavior and postfiresurface effects can change rapidly, and can be obscured by clouds,smoke and other optically thick aerosols (Giglio, 2007; Roy, Boschetti,Justice, & Ju, 2008; Smith & Wooster, 2005). In addition, disturbancessuch as shadows, flooding, crop harvesting, or rapid vegetation senescencemay produce spectrally similar effects to burned areas in single
Being translated, please wait..
Results (Indonesian) 2:[Copy]
Copied!
Data kasar satelit resolusi spasial (500 m untuk 1 km) telah
digunakan secara luas dalam dekade terakhir untuk secara sistematis memantau kebakaran menggunakan
algoritma komputer untuk mendeteksi lokasi dan intensitas kebakaran aktif
pada saat layang satelit, dan algoritma tomap batas spasial
dari daerah yang terkena kebakaran (Mouillot et al, 2014;. Roy, Boschetti, & Smith,
2013). Sampai sukses peluncuran resolusi kasar mengorbit kutub-
Resolution Imaging Spectroradiometer (MODIS) sensor Moderate pada
Terra dan Aqua platform tidak ada sistem satelit lingkungan
dengan kemampuan pemantauan khusus api (Peradilan, Smith, Gill, &
Csiszar, 2003). The MODIS desain mencakup band yang dipilih untuk deteksi kebakaran
dan cocok untuk pemetaan daerah yang terbakar, dan data MODIS digunakan
untuk sistematis menghasilkan resolusi kasar global harian 1 km aktif api
(Giglio, Descloitres, Keadilan, & Kaufman, 2003), bulanan 500 m terbakar
daerah (Giglio, Loboda, Roy, Quayle, & Justice, 2009; Roy, Jin, Lewis, &
Justice, 2005), dan produk emisi global yang terkait (van der Werf
et al, 2010.). Rekor produk MODIS akan terus dengan sukses 2011
Terlihat Infrared Radiometer Pencitraan Suite (VIIRS) Suomi NPP
peluncuran dan direncanakan tindak-on Joint Polar Satellite Suite (JPSS) -1
misi VIIRS. VIIRS telah mendedikasikan kemampuan deteksi api yang aktif
(Csiszar et al, 2014;. Schroeder, Oliva, Giglio, & Csiszar 2014) dengan
resolusi spasial kasar dari 750 m dan 375 m untuk termal dan
panjang gelombang band reflektif masing-masing (Murphy, Ardanuy, Deluccia,
Clement, & Schueler, 2006).
kebutuhan sedang sampai resolusi spasial tinggi (10 m sampai 30 m)
dibakar produk daerah telah dianjurkan oleh pengguna produk api untuk aplikasi
termasuk akuntansi anggaran karbon, estimasi pyrogenic
emisi gas rumah kaca, partikulat dan aerosol (GOFC-GOLD,
2014; Hyer & Reid, 2009; Mouillot et al, 2014;. Randerson, Chen, van der
Werf, Rogers, & Morton, 2012), manajemen kebakaran dan remediasi pasca-api
(Lentile et al ., 2006; Rollins, 2009), dan untuk lingkungan
aplikasi manajemen (Peradilan et al, 2013;. Trigg & Roy, 2007). Meskipun
sedang sampai data satelit resolusi spasial tinggi, seperti yang disediakan
oleh Landsat (Roy et al., 2014), ASTER (Yamaguchi, Kahle, Tsu,
Kawakami, & Pniel, 1998) atau RapidEye (Tyc, Tulip, Schulten, Krischke,
& Oxfort, 2005), memberikan kesempatan untuk pemetaan rinci tata ruang
wilayah yang terbakar, mereka telah mengurangi resolusi temporal karena sempit
bidang pandang relatif terhadap resolusi kasar mengorbit kutub-sensor
asMODIS atau VIIRS tersebut. Frekuensi temporal akuisisi satelit
sangat penting untuk memantau kebakaran karena perilaku api dan postfire
efek permukaan dapat berubah dengan cepat, dan dapat tertutup oleh awan,
asap dan aerosol optik tebal lainnya (Giglio, 2007; Roy, Boschetti,
Keadilan, & Ju 2008; Smith & Wooster, 2005). Selain itu, gangguan
seperti bayangan, banjir, panen tanaman, atau penuaan vegetasi yang cepat
dapat menghasilkan efek spektral mirip dengan daerah dibakar di tunggal
Being translated, please wait..
 
Other languages
The translation tool support: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bosnian, Bulgarian, Catalan, Cebuano, Chichewa, Chinese, Chinese Traditional, Corsican, Croatian, Czech, Danish, Detect language, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Frisian, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Kinyarwanda, Klingon, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Myanmar (Burmese), Nepali, Norwegian, Odia (Oriya), Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scots Gaelic, Serbian, Sesotho, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Tatar, Telugu, Thai, Turkish, Turkmen, Ukrainian, Urdu, Uyghur, Uzbek, Vietnamese, Welsh, Xhosa, Yiddish, Yoruba, Zulu, Language translation.

Copyright ©2025 I Love Translation. All reserved.

E-mail: ilovetranslation@live.com