Results (
Thai) 1:
[Copy]Copied!
Twenty-seven crossbred gilts (Yorkshire × Landrace × Hampshire; 130 ± 6.44 kg; approximately 240 d of age) were used in this experiment. Gilts were fed 1.81 kg/d of their respective diet beginning 60 d prior to breeding. Gilts were randomly assigned to one of the three dietary treatments: control (Control) diet with no supplemental selenium added (n = 9), an inorganic source of Se (Inorganic) with 0.3 ppm of Se added as sodium selenite (n = 9), and an organic source of Se (Organic) with 0.3 ppm of Se added as selenized yeast (n = 9). Diets were formulated to meet the 1998 NRC requirements for gestating swine (Table 1). Concentrations of Se in the corn and soybean meal used in the gestation and lactation diets were 0.02 ppm and 0.759 ppm, respectively. Diets contained 0.182 ppm, 0.469 ppm, and 0.419 ppm of Se for the control, inorganic source, and organic source diets, respectively. Gilts were individually housed in a 1.2 m × 1.8 m partially slatted pen in an environmentally controlled room with ad libitum access to water. Each gilt was fed 15 mg altrenogest (Matrix) each day for 15 d to synchronize estrus. Estrus detection was performed by exposing gilts to a mature boar twice daily for 20 min each, beginning the third day after cessation of the altrenogest treatment and continuing for 4 d. The first day the gilt stood immobile in the presence of the boar was designated as d 1 of the estrous cycle. Gilts were bred by artificial insemination 2 h after their initial display of standing estrus. Pregnancy was confirmed by ultrasound 28 d post breeding. Of the 27 females bred, 16 gilts became pregnant; Control (n = 8), Inorganic (n = 4), and Organic (n = 4).
Being translated, please wait..